
General Game Playing Hyper-Agents for Ludii
Nicholas Thompson

College of Science and Engineering
Flinders University
Adelaide, Australia

thom1135@flinders.edu.au

Matthew Stephenson
College of Science and Engineering

Flinders University
Adelaide, Australia

matthew.stephenson@flinders.edu.au

Abstract—This paper explores the viability and effectiveness
of hyper-agent approaches for the Ludii general game system.
These hyper-agents utilise trained machine learning models to
predict the optimal sub-agent and heuristics for previously
unseen board games, based on automatically detectable game
parameters (ludemes and concepts). Several hyper-agents based
on portfolio and ensemble design approaches were implemented
within the Ludii system. Each hyper-agent was trained on 460
games with known sub-agent and heuristic performances, with
evaluations being performed on a representative set of 50 new
games. Our best performing hyper-agent approach demonstrated
a statistically significant win-rate improvement over all of the
individual sub-agents utilised in its training corpus.

Index Terms—General Game Playing, Hyper-Agents, Board
Games, Ludii

I. INTRODUCTION

The development of artificial intelligence (AI) agents for
game playing is an area of research whose broad goal is to
explore the capabilities of AI in complex strategic decision-
making and long-term planning problems [1], [2]. With well-
defined parameters and objectives, games provide excellent
environments both for benchmarking agent performance and
developing novel search algorithms [3]. Techniques developed
for game playing agents can often be adapted to real-world do-
mains, and real-world environments can be virtually simulated
within digital game environments [4].

Specialised agents developed for mastery of a single game
have seen impressive results against expert level human play-
ers. IBM’s Deep Blue, a chess playing agent, exemplified
this with its defeat of chess grandmaster and reigning world
champion Garry Kasparov in 1997 [5]. Google DeepMind’s
AlphaGo and its successors have defeated professional Go
players [6], with the most recent iteration, MuZero, mastering
Chess, Go and Shogi [7]. Despite their impressive perfor-
mance, specialised agents find much of their success in domain
or game specific knowledge, hindering their performance in
games outside of their training domain [8].

Rather than focusing on an individual or limited set of
games, General Game Playing (GGP) agents are developed
with the goal of matching and exceeding human performance
across a varied range of games, with limited prior knowledge
of the game’s rules, mechanics and environments [2], [9].
Research into general game playing has become increasingly
popular in the academic AI community, due its potential to

provide insight into the broader challenge of artificial gen-
eral intelligence [10]. One promising approach to developing
general game playing agents involves the use of hyper-agents,
which combine multiple specialised sub-agents or lower level
algorithms in an attempt to leverage each of their individual
strengths [11]. Hyper-agents are known to work best in scenar-
ios where multiple sub-agents are available, and where each
sub-agent performs differentially well across various scenarios
within the same domain [12].

This research explores two hyper-agent approaches, each
based on trained machine learning models, known as the port-
folio and ensemble techniques. A portfolio agent implements
a selection mechanism to change its applied sub-agent based
on the game it is presented with. An ensemble agent instead
utilises a voting system, where each sub-agent casts a vote for
their preferred move before an arbitrator selects the most pop-
ular. Several hyper-agents based on these two techniques were
developed and evaluated for the Ludii general game system,
one of the largest collections of board games for AI research
purposes. Our hyper-agents utilise automatically extractable
features based on the pieces, rules and mechanics of the
game, in order to select the optimal sub-agent(s) for selecting
appropriate moves. Our results demonstrate the effectiveness
of hyper-agent approaches for Ludii, providing a statistically
significant performance improvement when compared to all
other baseline agents.

The rest of this paper is structured as follows. Section
II covers prior work related to General Game Playing and
Hyper-Agents. Section III describes the implemented hyper-
agent approaches and training process. Section IV defines the
evaluation process, including how a diverse set of test games
was selected. Section V presents the experimental results
and discusses our findings. Section VI provides our overall
conclusions and suggestions for future research.

II. BACKGROUND

A. General Game Playing Systems

General game playing systems aim to provide a universal
framework and language that can be used to describe and play
a large range of games in a structured way. Developed in 2005,
the Game Description Language (GDL) was one of the first
general game frameworks for academic research [13]. GDL
represents its games as state machines, with rules to specify
state transitions, and distinctions made between initial states,



goal states, and terminal states. More recent general game
playing systems such as General Video Game AI (GVGAI),
Regular Boardgames (RBG), and Ludii, were created to offer a
wider range of game types, along with more efficient play-outs
and streamlined game description languages [14].

The General Video Game AI (GVGAI) framework allows
for the creation of simple arcade-style video games using the
Video Game Description Language (VGDL), which provides
a high level representation of a game’s mechanics and level
layout [15], [16]. This framework has been the subject of
much research over the past decade, with several associ-
ated competitions focusing on both game playing agents and
content generation [17]. Regular Boardgames (RBG) is a
formal game description language designed for deterministic,
complete-information games [18]. RBG describes games using
regular expressions that define legal moves and transitions in a
compact, low-level format. This makes RBG particularly well
suited for combinatorial game solving and AI competitions,
where performance optimisation is crucial [19].

However, out of all the current general game playing
systems, the one that arguably offers the largest and most
diverse collection of games is Ludii. Ludii is a general board
game system that describes its games in terms of keywords
called ludemes [20], [21]. A ludeme is a term that describes a
single game element, as defined in the Ludii Game Description
Language (LGDL), and can be combined to describe a large
set of highly varied games [22]. Ludii also allows for the
automatic detection of more abstract game concepts, often
arising from distinct combinations of ludemes within a spe-
cific rule context, allowing for clearer conceptual distinction
between games [23]. The high number and variety of games
available within Ludii, along with this corpus of automatically
detectable game features (ludemes and concepts), makes it
an ideal framework for evaluating hyper-agent game playing
techniques.

B. Hyper-Agents

This section covers the two main design approaches for
creating hyper-agents, namely that of portfolio and ensemble
techniques.

1) Portfolio: Portfolio agents are arguably the simplest
form of hyper-agent, whereby a single sub-agent is selected to
decide which move to make in any given game state. Portfolio
agents have been previously demonstrated to be effective for
several video games [12]. In 2017 a portfolio agent was
developed using the Angry Birds AI competition framework,
following the observation that agents from previous years had
varied performances across different levels [24]. The highest
score that each agent achieved for each level was recorded after
a series of prior competition runs, along with key features of
each level, to provide the portfolio agent with a set of training
data. After training machine learning models to predict the best
agent for any given level based on these features, the resulting
portfolio agent was able to outperform all prior competition
agents across 80 previously unseen levels.

An exploration of portfolio search optimisation for general
strategy game playing found that portfolio approaches for
Stratega, a general strategy games framework, were also highly
effective [25]. This analysis reviewed portfolio improvements
to decision-making for real-time scenarios, in which the port-
folio search modelled increasingly optimised moves for both
agent and opponent units across the six potential actions that
each unit could take. This approach is also noted as a common
implementation for unit micromanagement in other real-time
strategy games [26].

2) Ensemble: Ensemble agents employ a slightly different
approach to utilising sub-agents. Rather than selecting the
best agent for a particular scenario, ensemble agents instead
poll all their sub-agents and often proceed with the most
popular move. A 2019 study evaluated an ensemble decision
system for the General Video Game AI competition [11], in
which the ensemble agent allowed each sub-agent to vote for
their desired move before a separate arbitrator made the final
decision. The authors observed that the ensemble agent was
consistently outperformed by individual sub-agents in each
game, even though these agents were also included part of the
ensemble. This highlights one of the potential limitations with
the equal polling system used by most ensemble agents, in
that while they can be very good at achieving a very consistent
performance across many games they are rarely the best choice
(i.e., “a jack of all trades, but master of none”).

Another 2022 study describes a weighted ensemble agent
created to play the game Werewolf [27]. Werewolf is a social
communication game in which players must utilise incomplete
information, deception, and deduction to identify secret impos-
tors (i.e., werewolves). This study also highlights a potential
issue with regular ensemble agents, namely that of each sub-
agent having an equal weighting in move selection polls, that
reduces the effective contribution of high performing sub-
agents. To address this, each sub-agent was assigned a weight
based on its overall performance during training, such that
the importance of its vote when polled would be adjusted
accordingly. While this ensemble agent performed well in
certain setups, the results from this study make it difficult
to draw conclusions about the effectiveness of a weighted
ensemble approach, since the top sub-agent still outperformed
the ensemble agent in most games.

C. Hyper-Agents for Ludii

In 2021, a preliminary study was conducted to investigate
whether machine learning models could be used to predict
the performance of general game playing heuristics for Ludii,
based on the ludemes used in each game’s description [28].
This study explored the performance of several agent heuristics
across 695 games within Ludii, with their results indicating
that a game’s ludemes could be used to reliably predict
heuristic performance. This work also suggested potential
venues for further research, including into the development
of a full hyper-agent for Ludii capable of selecting optimal
agents and heuristics for new games.



With its large repository of games, and an existing collection
of baseline game playing agents, the Ludii game system
provides the ideal environment for the development of general
game playing hyper-agents. At the time of writing, the Ludii
system does not yet have any hyper-agent implementations,
and results sourced from the Ludii database indicate strong
differential performance between agents across the wide va-
riety of its games [29]. If a hyper-agent approach could
be developed that is capable of identifying correlations and
patterns between each agent’s performance and Ludii’s general
game features, optimal agents could be selected to play novel
games, with the potential for improved zero-shot general game
playing performance.

III. METHODOLOGY

A. Hyper-Agent Design

Based on the previously described portfolio and ensemble
approaches, three potential hyper-agent designs were pro-
posed.

1) Portfolio Agent: This agent operates by using a trained
machine learning model to predict the best performing sub-
model for the provided game. This selection process occurs at
the start of the game, after which the selected sub-agent will
be used to make all future moves.

2) Ensemble Agent: This agent operates by allowing all
available sub-agents to select a desired move, after which a
simple majority vote is used to determine which move to make.
Any ties between multiple moves with the highest number of
votes are decided through random selection. This process is
repeated for every move that needs to be made.

3) Weighted Ensemble Agent: This agent operates by first
using a trained machine learning model to predict the expected
performance (i.e., win-rate) of each sub-agent for the provided
game. This prediction process occurs at the start of the game,
in order to determine a respective weighting for each sub-
agent. Afterwards, this agent operates the same as the Ensem-
ble agent, except that selected moves are instead determined
through a weighted vote process rather than a simple majority
(i.e., agents with a higher predicted performance have greater
voting power).

B. Sub-Agent Performance Prediction

The Ludii general game system includes a handful of
baseline general game playing techniques that can be treated as
sub-agents for our developed hyper-agent. Short descriptions
and references for each of the five sub-agent techniques used
in our available agent pool are defined in Table I. As well
as existing agents, Ludii also provides a set of automatically
detectable features for each game, comprising 598 ludeme
and 511 concept values. Each ludeme feature is a binary
value, representing whether a corresponding ludemic keyword
is present in the game’s description. Concepts can be either
binary or numerical values, and are determined based on
specific ludemic patterns and arrangements within the game
description (e.g., the number of players, or whether pieces
are captured by jumping over them). Note, for this paper we

TABLE I
SET OF SUB-AGENTS USED IN THE LUDII HYPER-AGENT

IMPLEMENTATIONS

Agent Description

Alpha-Beta Alpha-Beta tree pruning algorithm [30]

UCT Monte Carlo Tree Search (MCTS) algo-
rithm, with Upper Confidence Bounds ap-
plied to Trees [31]

MAST MCTS with Move-Average Sampling [32]

MC-GRAVE MCTS with the Generalised Rapid Action
Value Estimation heuristic [33]

Progressive History MCTS with progressive bias using the his-
tory heuristic [34]

only consider the 511 “compilation” concepts that are available
directly at the start of the game, without requiring costly
playouts to be run.

In order to utilise our proposed portfolio and weighted
ensemble agents, we first need to train machine learning
models capable of predicting the performance of each sub-
agent for a provided game. For this purpose, we sourced data
from the Ludii database1 (v1.3.12), which provided both the
ludemic and concept feature values for all games in Ludii,
but also agent performance results for a large (although not
complete) number of games. Out of the 1109 games listed
in the Ludii database with both agent and ludeme result,
460 also include expected win-rates for all sub-agents. These
games were therefore utilised to train our hyper-agent machine
learning models.

1) Portfolio Agent (best agent prediction): In order to
predict the best performing agent for a given game, we
can either use a classification or regression model. A single
classification model can be trained on each of the 460 labelled
games, to directly predict the single best performing agent.
However, we can also utilise a suite of multiple regression
models, each trained to predict the win-rate for a specific
sub-agent. When required to predict the best agent, we can
use these models to predict the win-rate for all sub-agents
and simply return whichever has the highest value. In order
to determine which approach and model would perform best,
we trained and evaluated several machine learning techniques
using 10-fold-cross-validation, see Table II, calculating the
average difference between the win-rates of the predicted
and the actual best sub-agent (i.e., regret) as our comparison
metric.

The regret metric was selected over an alternative measure
of accuracy to better reflect the actual cost of making a
suboptimal prediction, since the selected sub-agent will still
produce a win-rate across a set of games. In addition to the
candidate models, a dummy (naive) regressor and classifier
were also evaluated, providing a baseline point of comparison
for model performance. In this case, the approach that achieved

1https://ludii.games/download.php



TABLE II
TRAINED MODEL PERFORMANCE FOR PREDICTING BEST AGENT

Algorithm Regret

Random Forest Regressor 5.22
Gradient Boosting Regression 5.78
Random Forest Classifier 5.78
Multi-layer Perception Classifier 7.19
Decision Tree Classifier 9.55
Support Vector Regression (sigmoid) 12.99
Dummy Regressor (mean) 12.99
Dummy Classifier (most frequent) 12.99
Gaussian Naive Bayes 14.14
Linear Regression 19.03

the lowest average regret was the suite of multiple random
forest regressor models.

2) Weighted Ensemble Agent (best agent prediction): Un-
like the portfolio agent, the weighted ensemble agent requires
that the win-rates of each sub-agent be predicted individually
to provide a suitable weighting for move selection. Thankfully,
we can utilise the same Random Forest Regressor models as
the portfolio agent to provide this weighting. This essentially
means that when using either the portfolio or weighted ensem-
ble hyper-agents, the trained random forest regressor models
are run at the start of the game to provide a win-rate estimate
for each sub-agent. In the case of the portfolio agent this is
used to select the sub-agent with the highest predicted win-rate
to play the entire game, while for the weighted ensemble agent
these predicted win-rates will provide the respective sub-agent
voting weights when conducting move polls.

3) Heuristic Prediction: One issue that also needs to be
addressed is that of appropriate heuristic selection, specifically
for the Alpha-Beta sub-agent. This agent relies on suitable
heuristics being provided to evaluate intermediate game states,
and its performance drops significantly if these are not avail-
able. To account for this, we also trained additional machine
learning models to predict the best performing Ludii heuristic,
using a similar approach that of predicting the best sub-
agent. The results for these heuristic prediction models are
presented in Table III, showing that using a suite of random
forest regressor models was once again the best performing
approach. These models will be run at the start of each game
to determine the heuristic that Alpha-Beta agent will use to
select its moves (if chosen by the hyper-agent). Further details
on all available Ludii game heuristics are provided in [28].

C. Ludii Hyper-agents

Each of the three hyper-agent approaches (portfolio, ensem-
ble and weighted ensemble) were implemented natively into
Ludii. This was achieved by integrating the machine learning
models described above for agent and heuristic selection with
the Ludii system’s game object, which provides ludeme and
concept feature data at the start of each game. The time
required to predict agent and heuristic win-rates using these
machine learning models was largely negligible, and can
be considered as part of the agent’s setup time. A general

TABLE III
TRAINED MODEL PERFORMANCE FOR PREDICTING BEST HEURISTIC

Algorithm Regret

Random Forest Regressor 7.70
Gradient Boosting Regression 8.10
Random Forest Classifier 8.86
Multi-layer Perception Classifier 10.38
Decision Tree Classifier 13.68
Gaussian Naive Bayes 14.06
Support Vector Regression (sigmoid) 14.71
Dummy Regressor (mean) 16.55
Dummy Classifier (most frequent) 16.55
Linear Regression 16.76

overview of how our hyper-agents are initialised and play
games in Ludii is as follows:

1) Feature Extraction: Ludeme and concept feature data
is extracted from the Ludii game object.

2) Agent & Heuristic Prediction: Trained random forest
regressor models are used to predict the win-rate for
each sub-agent and heuristic, based on the extracted
ludeme and concept features.

3) Sub-agent initialisation: All sub-agents are initialised,
with Alpha-Beta using the heuristic with the highest
predicted win-rate from step 2.

4) Hyper-Agent Move Selection: Whenever required to
make a move, the hyper-agent uses one of the following
approaches:

a) Portfolio Agent: Always uses the move returned
by the sub-agent with the highest predicted win-
rate from step 2.

b) Ensemble Agent: Each sub-agent receives an
equal vote for deciding the next move to make.

c) Weighted Ensemble Agent: Each sub-agent re-
ceives a weighted vote for deciding the next move
to make, with the strength of its vote equal to its
predicted win-rate from step 2.

Agents in Ludii are typically given a fixed time limit to
make each move (i.e., thinking time). While agents are typi-
cally restricted to a single computational thread, our described
ensemble and weighted ensemble approaches allow for effi-
cient parallelisation between sub-agents when multiple threads
are available. We therefore also implemented two alternative
versions for each these ensemble hyper-agents, one where
the available thinking time is split evenly between each sub-
agent (non-parallel) and another where each agent is provided
the full thinking time (parallel). These parallelised ensemble
agents are arguably not a fair comparison, as other agents
could also potentially take advantage of multiple threads if
allowed to do so, but we still include them as a point of
comparison for if all ensemble sub-agents were permitted the
full thinking time for deciding their moves.

IV. EXPERIMENTS

The following experiment was developed to evaluate the
performance of our proposed hyper-agents, compared to that of



each baseline agent within Ludii. Each agent would play a rep-
resentative set of 50 previously unseen games, with each game
being played 50 times to establish a reliable win-rate measure.
The agent being evaluated would always take the role of player
1, with any additional players populated with standard UCT
agents. Each agent was provided with one second of thinking
time per move, and each game had a maximum turn limit of
1000 moves per agent. This maximum turn limit was imposed
to prevent stalemated games from going on forever, and would
result in an automatic draw if exceeded. The result of each
game was recorded as either a 0 (loss), 1 (win) or 1/N (draw),
where N is the total number of remaining active players. The
evaluated agents included the five sub-agents specified in table
I, the portfolio agent, the regular ensemble agent, the weighted
ensemble agent and a random agent. Parallel implementations
of the ensemble agents, with each sub-agent provided the
full thinking time, were also evaluated. All experiments were
run using several Docker containers, each with 2x Intel(R)
Xeon(R) Gold 5318Y CPU (2.10GHz) and 16GB RAM. Full
source code and experiment results for this paper are available
at.2

A. Evaluation Game Selection

To properly evaluate the effectiveness of our presented
hyper-agent approaches, we need to compare their perfor-
mance against that of the sub-agents for a previously unseen
set of games. Of the 1109 games available in the Ludii
database, 460 were present in the portfolio model training
dataset, leaving a potential 649 games that could be used
for evaluation purposes. Given that the necessary computation
time required to perform a full evaluation of each agent across
all 649 available test games would be very prohibitively costly,
we instead opted to select a smaller representative set of 50
evaluation games.

This representative set of 50 evaluation games was selected
using a “maximal spread” process, that iteratively selected
games with the highest minimum cosine distance from any
previously selected evaluation games:

1) Initialise the set of selected evaluation games, S, with
an arbitrary first game.

2) For each subsequent selection, choose the game g∗ that
maximises the minimum distance from all previously
selected evaluation games:

g∗ = arg max
g∈G\S

min
s∈S

d(g, s)

where:

• G is the full set of available evaluation games.
• S is the subset of already selected evaluation games.
• d(g, s) is the distance between game g and game s.

2https://github.com/thom11345/ludii-hyper-agents
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Fig. 1. t-SNE visualisation of the relative spread of all 1109 available games
in Ludii, based on their ludeme and concept values. Overlaid is a heat map
illustrating the regret associated with sub-agent selection for our portfolio
agent during evaluation, where higher regret values indicate suboptimal sub-
agent choices.

The distance between two games was calculated using the
cosine similarity between the two feature vectors (defined by
the set of ludemes and concepts) that describe each game:

dcos(gi,gj) = 1− gi · gj

∥gi∥∥gj∥
where:

• gi · gj =
∑

k gi,kgj,k is the dot product of the two game
vectors.

• ∥gi∥ =
√∑

k g
2
i,k is the magnitude of the vector.

Cosine similarity was chosen over the Euclidean distance
because of the high dimensionality of the feature data [35].
Prior to the pairwise distance calculations, a bi-symmetric
log transform was performed on the concept feature values
as described in [36]. This operation was executed with the
intention of minimising the impact of concepts with large nu-
merical ranges, while still preserving the relative significance
of concepts with binary values.

A t-distributed stochastic neighbour embedding (T-SNE)
visualisation of all 1109 Ludii games is shown in Figure 1,
based on each game’s feature vector (ludeme and concept
values). The large coloured dots represent the 50 games
selected for evaluation, while the solid blue dots indicate
potential evaluation games that were not selected. The faded
blue points indicate games available in the training set. Using
this visualisation we can see that our evaluation game selection
process provides a fairly well distributed 50 game representa-
tion of the full game set.

V. RESULTS

Performance (win-rate) results for each agent, averaged
across all 50 evaluation games, are presented in Table IV. To



TABLE IV
AVERAGE AGENT WIN-RATES ACROSS ALL EVALUATION GAMES.

Agent Win-Rate (%) Standard Error

Parallel Weighted Ensemble 65.04 0.92
Parallel Ensemble 61.36 0.94
Portfolio 60.28 0.94
Progressive History 52.72 0.97
Weighted Ensemble 49.35 0.97
MAST 47.55 0.97
MC-GRAVE 47.41 0.96
UCT 46.70 0.96
Ensemble 44.75 0.96
Alpha-Beta 43.24 0.95
Random 8.46 0.51

TABLE V
FREQUENCY OF SUB-AGENT SELECTION BY PORTFOLIO AGENT DURING

EVALUATION, SUB-AGENT PERFORMANCE IN TRAINING DATA, AND
AVERAGE REGRET WHEN SUB-AGENT SELECTED.

Agent Selected (%) Training Set (%) Regret

Alpha-Beta 46.0 51.9 13.0
MC-GRAVE 20.0 8.9 5.8
Progressive History 14.0 8.0 10.7
UCT 12.0 14.3 18.0
MAST 8.0 13.3 16.3
Random 0.0 3.54 N/A

confirm whether any differences in win-rate were statistically
significant, pairwise independent samples t-tests with Holm-
Bonfferroni correction were conducted between all agent pairs,
see Table VI. Table V shows how frequently each sub-agent
was selected by our portfolio agent during evaluation, along
with the frequency with which each sub-agent scored the
highest in the training data and the average regret obtained
when selecting this sub-agent during evaluation. Lastly, the
colour of the 50 evaluation game dots in Figure 1 represents
the average regret obtained by our portfolio agent when
playing each of these games, with red dots indicating games
where the selected sub-agent performed especially poorly.

These results demonstrate that our implemented hyper-
agents perform well in the Ludii system, with the portfolio
agent approach outperforming all non-parallelised agents with
a statistically significant difference. This improvement serves
as further validation of the ability of our random forest regres-
sion models to accurately predict agent and heuristic win-rates
for each game. While both parallel ensemble implementations
performed better than any of the other agents, their non-
parallel counterparts saw limited success. Both of the non-
parallel ensemble agents underperformed compared to the
baseline Ludii sub-agents, although the weighted ensemble
agent did provide a statistically significant improvement over
the regular (i.e., non-weighted) ensemble agent.

A. Discussion

1) Alpha-Beta Heuristics: The sub-agent with the highest
average win-rate within the original Ludii training dataset was
Alpha-Beta (Table V), while the results from our evaluation
experiment saw Progressive History perform better, with a

statistically significant difference (Table VI). One reason for
this could be that there were several games within our evalu-
ation set that the Alpha-Beta sub-agent did not support, likely
due to incompatible heuristics, resulting in a 0% win-rate. As
previously mentioned, many of the Alpha-Beta agent results
in the Ludii database are based on playouts using handcrafted
heuristics, which is potentially skewing Alpha-Beta’s overall
win-rate higher in the training data. To ensure the results in this
experiment were applicable to general game playing with no
domain specific knowledge, our Alpha-Beta sub-agent instead
had to rely on the heuristics predicted by our random forest
models. Despite the fact that Alpha-Beta’s win-rate was likely
inflated in the training data, the sub-agent predictions were
still reliable enough overall to produce a statistically significant
improvement in our portfolio agent’s win-rate compared to the
baseline Ludii sub-agents.

2) Weak Ensemble Performance: The non-parallel ensem-
ble agents underperformed expectations, bested by the top
performing Ludii agents. This is likely, in part, due to the
limited thinking time given to each agent within the experi-
ment. With a thinking time of 1 second per turn being split
among the five agents within the ensemble, each agent would
receive an average of 0.2 seconds to select a move. The
same experiment run with increased thinking time per agent
would likely yield improved performance for these ensemble
implementations. It’s important to note here that performance
comparisons between the parallel and non-parallel ensemble
agents should be done with care, as the non-parallel agents
have not been optimised for parallel searches. For an ensemble
with five agents, thinking time is increased by a factor of five
if each agent is allowed the full thinking time. Despite this
potentially unfair advantage, our results do show that both
parallel ensemble approaches do perform well, despite the fact
each individual agent is not given any additional thinking time
compared to the other baseline Ludii agents. Parallelisation is
also fairly trivial to implement for ensemble agents, indicating
that it is well worth taking advantage of if available.

3) Portfolio Agent Mistakes: Although there are no obvious
patterns in the regret heat map presented in Fig. 1, a closer look
at the games with the lowest performing portfolio predictions
may provide some insight into its limitations. The evaluation
games with the highest portfolio agent regret scores were 54
(Agon), 48 (Tara), and 40 (Murus Galicus).

• Agon, also known as Queen’s Guard, is a strategy game
played on a hexagonal grid in which two players take
turns moving their queen and 6 guards, with the goal of
reaching the centre of the board in the correct formation.
The agent selected for this game was Alpha-Beta, with the
material heuristic. This heuristic is likely a key reason for
the poor performance, since pieces in this game cannot be
captured, leaving material value constant throughout the
game. The best performing agent here was MAST, where
its ability to refine its strategy dynamically may have
allowed it to better recognise positional advantages and
navigate the game’s unique constraints more effectively.

• Tara is a push-based connection game where players try



TABLE VI
RESULTS OF PAIRWISE INDEPENDENT SAMPLES T-TESTS ASSESSING THE SIGNIFICANCE OF WIN-RATE DIFFERENCES BETWEEN AGENTS. P-VALUES

ADJUSTED USING HOLM-BONFERRONI CORRECTION (α = 0.05), WITH VALUES BELOW THE ADJUSTED SIGNIFICANCE THRESHOLD SHOWN IN GREEN.

* AB M MG PH U R PF E WE PW PE

AB NA T:-3.177
P:0.001

T:-3.079
P:0.002

T:-6.988
P:0.000

T:-2.552
P:>0.004

T:32.132
P:0.000

T:-12.710
P:0.000

T:-1.117
P:>0.010

T:-4.494
P:0.000

T:-16.441
P:0.000

T:-13.549
P:0.000

M T:3.177
P:0.001 NA T:0.106

P:>0.050
T:-3.778
P:0.000

T:0.626
P:>0.017

T:35.667
P:0.000

T:-9.415
P:0.000

T:2.055
P:>0.005

T:-1.309
P:>0.008

T:-13.077
P:0.000

T:-10.238
P:0.000

MG T:3.079
P:0.002

T:-0.106
P:>0.050 NA T:-3.895

P:0.000
T:0.521

P:>0.025
T:35.687
P:0.000

T:-9.548
P:0.000

T:1.954
P:>0.005

T:-1.419
P:>0.007

T:-13.223
P:0.000

T:-10.374
P:0.000

PH T:6.988
P:0.000

T:3.778
P:0.000

T:3.895
P:0.000 NA T:4.411

P:0.000
T:40.435
P:0.000

T:-5.597
P:0.000

T:5.847
P:0.000

T:2.465
P:>0.004

T:-9.220
P:0.000

T:-6.411
P:0.000

U T:2.552
P:>0.004

T:-0.626
P:>0.017

T:-0.521
P:>0.025

T:-4.411
P:0.000 NA T:34.982

P:0.000
T:-10.065
P:0.000

T:1.430
P:>0.006

T:-1.936
P:>0.006

T:-13.741
P:0.000

T:-10.891
P:0.000

R T:-32.132
P:0.000

T:-35.667
P:0.000

T:-35.687
P:0.000

T:-40.435
P:0.000

T:-34.982
P:0.000 NA T:-48.224

P:0.000
T:-33.287
P:0.000

T:-37.261
P:0.000

T:-53.580
P:0.000

T:-49.414
P:0.000

PF T:12.710
P:0.000

T:9.415
P:0.000

T:9.548
P:0.000

T:5.597
P:0.000

T:10.065
P:0.000

T:48.224
P:0.000 NA T:11.528

P:0.000
T:8.082
P:0.000

T:-3.606
P:0.000

T:-0.811
P:>0.013

E T:1.117
P:>0.010

T:-2.055
P:>0.005

T:-1.954
P:>0.005

T:-5.847
P:0.000

T:-1.430
P:>0.006

T:33.287
P:0.000

T:-11.528
P:0.000 NA T:-3.366

P:0.001
T:-15.228
P:0.000

T:-12.359
P:0.000

WE T:4.494
P:0.000

T:1.309
P:>0.008

T:1.419
P:>0.007

T:-2.465
P:>0.004

T:1.936
P:>0.006

T:37.261
P:0.000

T:-8.082
P:0.000

T:3.366
P:0.001 NA T:-11.727

P:0.000
T:-8.901
P:0.000

PW T:16.441
P:0.000

T:13.077
P:0.000

T:13.223
P:0.000

T:9.220
P:0.000

T:13.741
P:0.000

T:53.580
P:0.000

T:3.606
P:0.000

T:15.228
P:0.000

T:11.727
P:0.000 NA T:2.794

P:>0.004

PE T:13.549
P:0.000

T:10.238
P:0.000

T:10.374
P:0.000

T:6.411
P:0.000

T:10.891
P:0.000

T:49.414
P:0.000

T:0.811
P:>0.013

T:12.359
P:0.000

T:8.901
P:0.000

T:-2.794
P:>0.004 NA

* AB = Alpha-Beta, M = MAST, MG = MC-GRAVE, PH = Progressive History, U = UCT, R = Random, PF = Portfolio, E = Ensemble,
WE = Weighted Ensemble, PE = Parallel Ensemble, PW = Parallel Weighted Ensemble

to form a path across the board by pushing stones from
the edges. MC-GRAVE was the selected agent for this
game, while the best performing agent was UCT. It’s
possible here that MC-GRAVE’s reliance on past play-
outs is not well suited to the significant board state
changes that can result from the push mechanic.

• Murus Galicus is a two player positional strategy game
where the goal is to trap an opponent by preventing them
from making a legal move. The game includes a stacking
mechanic that allows players to create strong defensive
formations at the expense of board coverage and mobil-
ity. The agent selected here was Alpha-Beta, with the
material heuristic, while the best performing agent was
MAST once again. The similarity between this finding
and the result for Agon could imply that heuristic-driven
search methods like Alpha-Beta will under perform when
applied with inappropriate heuristics, and that sampling-
based techniques like MAST might be more a robust
choice for agent selection.

VI. CONCLUSION AND FUTURE WORK

Within this paper we have presented several hyper-agent
approaches for the Ludii general game system, capable of util-
ising a game’s ludemes and concepts to select the optimal sub-
agent(s). Several of these hyper-agents were shown to produce
a consistent improvement in average win-rate across a diverse

range of multiple previously unseen games. In particular, our
implemented portfolio agent produced a statistically significant
performance improvement over each of its constituent sub-
agents. Ensemble agents implemented in the Ludii system
were outperformed by at least one of their sub-agents overall,
though the weighted ensemble agent performed statistically
significantly better than its unweighted counterpart. Parallel
implementations of these ensemble agents achieved the highest
win-rates, though this may be attributable to the effective
increase in thinking time they were afforded.

A key limitation of this research is the restricted selection
of games used for hyper-agent evaluations. While the results
demonstrated statistically significant differences in agent win-
rates, the selected set of games did not include enough games
from the various game clusters to reveal any meaningful
patterns. Future research could address this by incorporating a
larger set of evaluation games. Additionally, the non-parallel
implementations of both the ensemble and weighted ensemble
agents did not perform as well as expected. With the signif-
icantly improved results of the parallel implementations, the
effect of increased thinking time may provide a compelling
avenue of research. Furthermore, instead of an ensemble of
agents, future work could explore the combination multiple
heuristics into an ensemble, leveraging their complementary
strengths to guide decision-making more effectively.
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